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ABSTRACT 

Northwestern University, 

IL 60208 (U.S.A.) 

Tamhane, A.C., Iordache, C. and Mah, R.S.H., 1988. A Bayesian approach to gross error detection in chemical process 

data. Part I: Model development. Chemometrics and Intelligent Laboratory Systems, 4: 33-45. 

A new statistical test based on the Bayesian approach for detecting gross errors in chemical process data is 

presented in this paper. Part I gives the theoretical development of the underlying model and the proposed test, while 

Part.11 gives the results of a simulation study for assessing the performance of the test. In Part I we first develop a 

one-time application of the Bayes test, and then embed it in a sequential setting. For this setting a probabilistic model 

is proposed for updating the prior probabilities of gross error occurrences in the light of accumulating data. 

Modifications in the basic model are suggested to take account of unknown magnitudes of gross errors and the aging of 

measuring instruments. Some practical difficulties in the application of the Bayes test, e.g., adjustments for unknown 

delay times in detecting gross errors in instruments, adjustments of instrument lifetimes when updating their failure 

probabilities, and computational complexity of the scheme, are discussed and heuristic methods for their amelioration 

are suggested. 

1 INTRODUCTION 

Process data in a chemical plant are subject to 
omnipresent random errors as well as gross errors. 
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The latter errors are caused by nonrandom events 
such as instrument biases, malfunctioning mea- 
surement devices, and leaks or depositions in pro- 
cess units. It is important to have efficient meth- 
ods for detection and removal of gross errors 
because their presence invalidates the basis for 
further treatment of the data and confounds the 
methods for monitoring process performance. 
Therefore considerable research effort has been 
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devoted to this problem. Tamhane and Mah [l] 
have given a detailed review of the various gross 
error detection methods studied in the literature. 
In this paper we shall restrict consideration to 
gross errors arising from measurement biases. 

The central issue in gross error detection is how 
to enhance the frequency of correct detections 
(power) and to reduce the associated time delays 
without increasing the incidence of false detec- 
tions. Thre are two ways to bring about this 
enhancement: First, to include as much relevant 
information as possible in the detection and iden- 
tification procedure, and second, to utilize this 
information as efficiently as possible. Thus far 
most of the statistical methods for gross error 
detection have been based upon the following 
basic information inputs: conservation con- 
straints, covariance matrix of measurement errors, 
bounds on variables, and measured process data. 
The widespread use of computerized data accural 
and management systems with capabilities for on- 
line access suggest the possibility of using histori- 
cal information concerning the past failure data 
on measuring instruments for further enhance- 
ment of the test procedure performance. The pres- 
ent paper represents the first attempt to model the 
occurrences of gross errors so that such historical 
information can be efficiently utilized. 

The Bayesian approach in statistics [2,3] pro- 
vides a natural framework for this purpose. It has 
been employed for outlier detection by several 
authors including Box and Tiao [4], de Alba and 
Van Ryzin [5], and Kitagawa and Akaike [6]. Its 
use in reliability applications has been extensively 
studied in Martz and Waller [7]. However, it has 
not been applied to the problem of gross error 
detection in process data. The objective of the 
present two-part paper is to develop this applica- 
tion of the Bayesian approach. Part I develops the 
basic model and the theory of the Bayes test, while 
Part II reports the results of a simulation study for 
assessing its performance, particularly in relation 
to the measurement test proposed by Mah and 
Tamhane [8], which is based on the classical Ney- 
man-Pearson approach to hypothesis testing. 

Another point of departure in the present re- 
search is that it takes into account the fact that the 
gross error detection tests are applied sequentially 

over time to the process data. The conventional 
tests have not considered this aspect as they were 
not designed to use the past data. For the Bayes 
test, however, the extent of past data, and how 
they are utilized in updating the prior information 
are important aspects. 

The summary of Part I is as follows. Section 2 
introduces the basic model for process data and 
gross errors. Section 3 considers a one-time appli- 
cation of the Bayes test for a single snap-shot of 
the process. Section 4 considers the sequential 
setting. For this setting a model is proposed for 
proper updating of the information on the occur- 
rences of gross errors. Some modifications of the 
basic model resulting from the necessity to relax 
certain restrictive assumptions, and other difficul- 
ties encountered with the basic model are dis- 
cussed in Section 5. Finally some concluding re- 
marks pertaining to Part I are given in Section 6. 
Sections in Part II are numbered consecutively 
following this paper. 

2 BASIC MODEL, ASSUMPTIONS AND NOTATION FOR 
A ONE-TIME APPLICATION OF THE BAYES TEST 

Throughout this paper we assume that the pro- 
cess is in a steady state. In this and the next 
section we restrict attention to a one-time applica- 
tion of the Bayes gross error detection test. To- 
ward this end we consider a single measurement 
period consisting of N 2 1 successive observations 
on a vector of n 2 1 variables of interest (e.g., 
total mass flow rates in n streams of the process 
network). Typically the data vectors, which are 
assumed to be mutually independent, are auto- 
matically sampled and recorded at regular time 
intervals of 0.5 to 5 minutes. We assume that gross 
errors can occur in any of the n measurements 
only at the beginning of a measurement period 
consisting of N data vectors, and that period is 
relatively short, say 10 to 30 minutes, so that no 
further changes take place during it; the Bayes test 
is applied at the end of the measurement period 
followed by checking and appropriate corrective 
actions on those measuring instruments in which 
gross errors are indicated by the Bayes test. 

The foregoing assumptions imply that we can 
base the Bayes test’ on the average of N data 
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vectors; we denote this average by y : n x 1 which 
is assumed to satisfy the following linear model: 

y=Dr+r+S@q (2.1) 

Here D : n Xp is a known full column rank ma- 
trix, x : p X 1 is a vector of unknown true values 
of the state variables, e : n x 1 is a vector of ran- 
dom errors, 6 : n x 1 is a vector of known nonzero 
magnitudes of gross errors, q : n x 1 is a vector of 
O’s and l’s, and 8 denotes the componentwise 
product, i.e. the ith component of 8 @ q equals 
6;q (i=l, 2,..., n). If qi = 1 (resp., = 0), then a 
gross error of known magnitude 8, is present 
(resp., not present) in the i th measurement (i = 
1, 2,..., n). (Throughout this paper we follow the 
notation that the ith component of vector a is ai, 
and the (i, j)th component of matrix A is aii.) 

We assume that l has a multivariate normal 
distribution with a zero mean vector and a known 
covariance matrix Q = (l/N)Z (denoted by E - 
N(0, Q)) where Z is the covariance matrix of the 
individual data vectors. (In practical applications 
Z is unknown but can be accurately estimated by 
cumulatively pooling its estimates over time. We 
do not address the problem of the estimation of I: 
here.) 

The vector x is assumed to satisfy the following 
set of linear balance constraints (e.g., mass and 
energy balances): 

Bx=O (2.2) 

where B is a q x p known full row rank matrix 
(referred to as the constraint matrix). More gener- 
ally, the balance constraints may involve, apart 
from x, additional unmeasured state variables 
(which do not appear in equation (2.1)) and the 
constraints may be no~omogeneous. It can be 
shown, however (see Crowe et al. [9] and Iordache 
et al. [lo]), that such general constraints can be 
reduced to (2.2). See ref. 8 for various examples 
and special cases of the model specified by (2.1) 
and (2.2). A special case of particular interest is 
D = I (where I denotes an identity matrix of ap- 
propriate order which equals n here); in this case 
the y,‘s are direct observations on the unknown 
xi’s (i = 1, 2,. . . , n). 

We next discuss the assumptions concerning 
the indicator vector of gross errors, q, which is the 

parameter vector of primary interest here. As 
stated before, q is assumed to remain fixed during 
a given measurement period. The prior probability 
that a gross error is present in the ith measure- 
ment at the beginning of the given measurement 
period will be denoted by pi (i = 1, 2,. . _ , n). Thus 
each qi is a Bernoulli random variable taking 
values 1 and 0 with probabilities pi and 1 -pi, 
respectively (i = 1, 2,. . . , n). Hence for the un- 
known vector q we have 2” possible values which 
may be denoted by q, for all subsets Z of 

{1,2,..., n } where the ith component of q, equals 
1 if ifZandOif i4Z(i=1,2 ,..., n). Inother 
words, if q = ql then gross errors are present in 
group Z of measurements. In particular, if Z is an 
empty set (denoted by $), we have q+ = 0 (the null 
vector) which means that all measurements are 
free of gross errors. Furthermore, as stated before, 
we will assume (at least initially) that if a gross 
error is present in the ith measurement, then it 
will have a known fixed magnitude aj # 0 (i = 

1,2 )...) n). 
Let us further assume that gross errors occur 

independently in different measurements (or 
sometimes we will say that the corresponding 
measuring instruments ‘fail’ independently of each 
other). Then the prior probability that q = q, is 
given by 

ni” I-rP,rI0-Pi) 
iEI i@iI 

(2.3) 

We will refer to the rr,‘s as the group prior prob- 
abilities. In particular, the prior probability that 
no gross errors are present in any of the measure- 
ments is given by 

q= ii0 -PA 
i=l 

(2.4) 

Thus, given the pi’s we can compute the group 
prior probabilities for all 2” possible states of 
nature (i.e., possible values of q). 

3 ONE-TIME APPLICATION OF THE BAYES TEST 

In the simplest form, the basic idea in the 
Bayes test is to use the current data to update the 
group prior probabilities g1 to obtain the corre- 
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sponding group posterior probabilities E1 via the 
Bayes rule; if 6,. 5 max,r, then q,. is declared 
as the true state of nature, i.e., the measurements 
in group f* are declared to contain gross errors. 
If I * = 9 then all measurements are declared to 
be free of gross errors. 

A general formula for the posterior probability 
of ql is given by 

ddata rl, > 

” = c rJ(data 1 s) 
(3-I) 

J 

where f(data q,) the probability 
function (p.d.f.) the data that the 
state of is q,, the summation the 
denominator over all subsets f 
{I, 2,..., Now, for data we use Y 

because its involves the 
true state vector x. we shall a 
transformed Cy such the p.d.f. Cy 
is of x depends only q; here is an 
m X n nonrandom matrix whose row dimension m 
will become clear from the following discussion 

The transformed vector Cy will have a multi- 
variate normal distribution with mean vector CDx 
f C(6 8 q) and covariance matrix CQC’. There- 
fore C must be such that CDx = 0 (where 0 de- 
notes a null vector of appropriate dimension). 
This condition, using (2.2), is equivalent to 

CD=AB (3.2) 
for some m X q matrix A. Moreover, CQC’ must 
be nonsingular (for Cy to have a p.d.f.), i.e., C 
and hence A must be full row rank. Then using 
Cy for data in (3.1) we have 

+I = (r, exp{ - f( y - &,)‘C’(CQC’)-r 

XC(Y-6,))) 
i 

(Cr. exp{ -S(Y-%)’ 

XC’(CQC’)-‘C( :- SJ,)) (3.3) 

where 6, = 6 Q qr, i.e., the i th component of 8, 
equals 8, if i E Z and 0 if i E 1. Note that any 
nonsingular transformation of Cy yields the same 
posteriors SI. 

A possible choice for C is one that corresponds 
to A = I in (3.2) and has m = q rows, e.g., 

C = B(D’Q-‘D)-‘D’Q-’ (3.4) 

However, such a choice is not unique, e.g., an 
alternate choice is 

C = B(D’D)-ID’ (3.5) 

Note that (3.5) cannot be obtained from (3.4) by a 
nonsingular transformation, and thus yields differ- 
ent posteriors 97,. 

The above discussion raises the following ques- 
tion: What is the maximum row dimension m for 
the transformation matrix C? It is desirable to use 
the maximal dimensional transformation because 
such a transformation involves minimal loss of 
information about q, the parameter vector of in- 
terest. An algebraic lemma in the Appendix shows 
that the maximum value of m is n -p + q. The 
Appendix also gives a derivation of a transforma- 
tion of this dimensionality, which results in the 
following formula for the posterior probability: 

17 = sI exp(-f(y-~,)‘W(Y--6,)) 
I &.I exP{-f(Y-6,)‘W(Y-6,)} 

(3.6) 

J 

where W is defined in equation (A.14) of the 
Appendix. 

We finally note that since the Bayes rule is the 
maximum posterior decision rule here (declare qr * 
to be the true state of nature if 7j1* = max,;;,), 
and since all the +7, ‘s share a common denomina- 
tor, it suffices to calculate only their numerators 
and base the decision on them. Furthermore, it is 
computationally simpler to calculate the loga- 
rithms of the numerators of (3.6). Thus the final 
form of the decision rule used in our work is: 

Decide q = qr * if Z * maximizes 

(ln57~-~(y-6,)‘W(y-6,)} overall Z 

(3.7) 

4 SEQUENTIAL APPLICATION OF THE BAYES TEST 

We assume that the data vectors are sampled at 
regular time intervals and the Bayes test derived in 
Section 3 is applied after every N samplings of the 
data vectors. Let us index the time periods when 
the gross error detection test is applied by t (t = 
1, 2,. . .); t = 0 will denote the beginning of the 
first time period. 

Let y(t): n X 1 denote the average of N >= 1 
data vectors observed during the time period t; 
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y(t) is assumed to follow (in analogy with (2.1)) 
the linear model 

y(t)=Dx+e(t)+6@+-1) (t=l,2,...) 

(4.1) 

In (4.1) x is subject to balance constraints (2.2) 
E(Z) is a vector of random errors which is assumed 
to have an N(0, Q) distribution, and ~l(t - 1) = 

(%(f - I)>.. - f q,(t - 1))’ is the indicator vector of 
gross errors present at time t - 1, i.e., at the 
beginning of time period t, where ~);(t - 1) = 1 
(resp., ni(t - 1) = 0) if a gross error is present 
(resp., not present) in the ith measurement at time 
f-l(i=l,2 )...) n,r=l,2 )... )_ 

Note that B, D, Q, and x are assumed to 
remain fixed over the time horizon of interest; this 
corresponds to the steady state assumption stated 
at the beginning of Section 2. Although mathe- 
matically it causes no difficulty if these quantities 
vary with t, the assumption of knowing B, D and 
Q for every t would be untenable in practice. 
Also, fluctuations in these quantities may give rise 
to time lags that the model is not equipped to 
handle. So it seems safer to restrict the present 
analysis to the steady state situation. 

Let the prior probability that a gross error (of 
magnitude 8;) is present in measurement i at the 
beginning of time period t, i.e., at time t - 1, be 
pi{? - 1) (i = 1, 2, _ _ _ , n). By the independence as- 
sumption stated in Section 2, the group prior 
probability at time t - 1 is given by (in analogy 
with (2.3)) 

711([-1)=,~I~i(~-1)~~(I-~i(t-l)) (4.2) 

Given the set of group prior probabilities 7r1(t 
- 1) and the averaged data vector y(t), group 
posterior probabilities +! (1) are calculated using 
(cf. (3.6)): 

ii,(t)= ~~(r-l)exp(-~(yft)-6,)’ 
( 

xW(p(r)-s,)})/(~n,(i-I) 

Xexp{-f(y(t)-G,)‘W(y(r)-S,)}) 

(4.3) 

The Bayes decision rule is applied using (3.7). Let 
I * = I*(f) be the group of inst~ents that is 
declared to contain gross errors. If I*(t) is non- 
empty then instruments in that group are checked. 
If qi(f - 1) = 0 and i E I*(f) then we have a type 
I error for me~urement i at time t. We assume 
that upon checking the measuring instrument it is 
known whether a type I error is committed, and 
corrective actions (e.g., repair or replacement) are 
taken only on those inst~ments i E I *(t) that are 
actually found to contain gross errors. Note that if 
qi(t - 1) = 1 and i P I*(t) then we have a type II 
error for that instrument. Type II errors are not 
detected because the corresponding inst~ments 
are not checked. 

We assume that corrective actions are perfect in 
the sense that after a corrective action is taken, the 
measuring instrument is completely free of a gross 
error. Thus if i E I*(t) then n,(t) = 0. If no cor- 
rective action is taken because i @ I *(t ) (in which 
case the true state of instrument i is not known), 
and if ni(t - 1) = I then vi(f) = 1. 

The model described thus far is essentially the 
same as that for a one-time application of the 
Bayes test, except that we now have a time param- 
eter t. The main new feature in the sequential 
setting is the incorporation of the previous experi- 
ences with ‘failures’ of measuring instruments (i.e., 
gross error occurrences in them) in updating the 
prior probabilities p,(t - 1). We now proceed to 
propose a probabilistic model for this purpose. 

Initially we will assume that instrument failures 
follow independent Bernoulli processes with a 
constant (with respect to time) failure rate 8, for 
the ith instrument (i = 1, 2,. . . , n). In other words, 
the probability that the ith instrument fails (if it is 
not already in a failed state) when it is T time 
periods old (7 = 1, 2,. . .) is the same, namely (3, 
(i= 1, 2,..., n), and the failures of a given instru- 
ment in different time periods are independent. 
(By the perfect corrective action assumption, an 
instrument is not assumed to fail at r = 0, i.e., 
immediately after it is repaired or replaced, and a 
repaired instrument is as good as new.) Thus the 
probability that instrument i lasts exactly r time 
periods is given by the geometric distribution: 

B,(l-8,)‘_’ 7=1,2,... (i=l,2 ,..., n) (4.4) 
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Let 5(t) denote, at time t, the time since 
instrument i was last checked. If instrument i has 
never been checked since the beginning of the test 
(t = 0) then we put ri(l) = t. We refer to 7,(t) as 
the age of the ith instrument at time t. Note that 
~~~ t) is not always the actual age because the 
instrument’s last checking may have been the re- 
sult of a type I error (false detection), and there- 
fore it may not have been repaired or replaced at 
that time. However, in such a case the information 
that the instrument had not failed at that time 
together with the memoryless property of the geo- 
metric distribution imply that probabilistically the 
instrument can be regarded as starting a new life 
at the time it was last checked. If the instrument 
was repaired or replaced at the time of its last 
checking then, of course, the instrument can be 
regarded as physically starting a new life (since 
repair is assumed to be perfect). Also note that the 
instrument may have failed before time t but the 
Bayes test may not have detected it by time t. 

The ideas introduced thus far will become 
clearer if one plots how qj( t) and T~( t) change 
with f. Sample realizations of these two quantities 
are plotted in Fig. 1. In this figure tIci) 2 1 and 
d/j’ 1 1 denote, respectively, for instrument i the 
time in service (lifetime) before its jth failure, and 
the delay in detecting that failure (i = 1, 2,. . .). 
Note that the t!j)‘s are not observable but the 
(t,“) + dj”)‘s are observable. Also note that the 
ni( t)-process is a simple level change process. A 
final observation is that r,(t) is simply the time 
since the last detection (correct or false). 

Now the conditional (for given 13;) prior prob- 
ability that instrument i is in a failed state at time 
t - 1 (i.e., ni(t - 1) = 1) is given by 

pi (t - 1) 0,) = P { the i th instrument has lifetime 

~Ti(t-l)lei} 

?(t- 1) 
= ,F:, a,(1 - 8i)T-1 (using (4.4)) 

= 1 - (1 -Oj)+‘) (i’l, 2 )...) n) (4.5) 

The instrument failure probabilities 6, are un- 
known parameters, so the pi( t - 11 Oi>,s defined 

above cannot be computed. We will put prior 
distributions on the 8,‘s and uncondition p,(t - 
1) 6,)‘s with respect to these prior distributions to 
obtain unconditional prior probabilities p,( t - 1). 
This approach has another advantage; namely, 
additional failure experiences with instruments can 
be used to update the prior distributions on the 
ei’s that reflect our additional knowledge about 
them. 

Convenient prior distributions for this purpose 
are independent beta distributions since they are 
conjugate priors with respect to the geometric 
distributions (4.4) (ref. 11, p. 395) that are fol- 
lowed by the instrument lifetimes. Let the prior 
distribution on 8, be a beta distribution with 
parameters 1, and m,: 

f,Cei) = 

r( Ii + mi) 

r(li)r(m;) 
e;-l(l _ e,)m,-’ 

(i=1,2 n) ,..., (4.6) 

where r( .) denotes the gamma function. Using 
this prior distribution we obtain the following 
expression for the unconditional prior probability 
that instrument i is in a failed state at time t - 1 
when its age is ~~(t - 1): 

= /o’{i - (1 - 8,)‘~(‘-“} 

r(li + m,) 

= 1 _ w, + m,)r(mi + df - 1)) 
r(r,)r(rj+mi+7i(t-l)) 

(i=1,2 n) ,.**, (4.7) 

These p,(t - 1)-values will be substituted in (4.2) 
to obtain the group prior probabilities I,. 

In (4.6) the parameters 1; and mi have the 
following interpretation: Z, is the number of previ- 
ous failures for instrument i and m, is the sum of 
previous lifetimes for instrument i (i = 1, 2,. . . , n). 
The mean of the prior distribution (4.6) is 4. = 
li/(ri + mi) (i = 1, 2,. . . , n). 

Given the starting values 1(O) and rn!‘) of the 
parameters li and m, for the beta prior’distribu- 
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Fig. 1. Sample realizations of vi(t) and 7,(r). F = Failure; CD = correct detection; FD = false detection. 

tion for fi,, if the first failure of the ith measuring 
instrument occurs after it has been in service for 
tj’) time periods, then it can be shown (see ref. 11, 
p_ 396) that fi, will have a beta posterior distribu- 
tion with parameters 

I!” = /!a’ + 1 and ,,#) = &a) + t(” - 1 

(i=‘l,2 n) ’ ’ ,---, (4.8) 

Note that 1:‘) is the new number of failures ob- 
served over a new total of 1;‘) + mj’) = Ijo) + m$ 
+ tj’) time periods. Applying (4.8) recursively we 
see that after a 2 1 failures of the i th instrument 
have occurred, the lifetime corresponding to the 
jth failure being tj” (j = 1, 2,. . . , a), the failure 

probability 13~ will have a beta posterior distribu- 
tion with parameters 

j=l 

(i=1,2 n) ,..., (4.9) 

The Bayes estimate of 13, will be the mean of this 
posterior distribution, which is 

j=l 

(i=1,2 It) ,*.-, (4.10) 
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From (4.9) we see that the larger the values of 
I”’ and rnr) (for a given prior mean 4(O) = 
Z$/(1!” + m$)) the greater the influence the prior 
distribution will have, and the less the influence 
the observed failure data will have on the pos- 
terior distribution of 6, (i = 1, 2,. _ _ , n). Therefore 
by a suitable choice of the values of I!“’ and m$‘), 
one can adjust the relative influences of the prior 
information and the data on the posterior of 8, 
(i= 1, 2 )...) n). 

The following method of choosing I,(‘) and miO) 
was proposed by Colombo and Constantini [12]: 
Define 

si = 

(I,‘@ + mp)( ,p’ + 1) 

/,‘O’( ,I”’ + @) + 1) 
(i=l,2 n) 3-e-2 

(4.11) 

which is the ratio of t(l) to 85’) if t!‘) = 1, i.e., if 
the failure occurs immediatel; after ;he first time 
period. Note that 1 < s, < 2, 

(i=1,2 n) ,..*, (4.12) 

Colombo and Constantini [12] suggest that one 
should choose e(“) which is a prior estimate of 0, 
without any cuirent data, and si which tells by 
what factor one is willing to change the prior 
estimate @” if the failure is observed immediately 
after the 6rst time period; then 1:“) and rnj’) can 
be computed from (4.12). Note that choosing a 
large value of si (close to 2) yields small values of 
1,‘“) and rnP which means that one is giving less 
weight to the prior information and more weight 
to the current data, and vice versa. 

5 SOME MODIFICATIONS IN THE BASIC MODEL 

Three assumptions that have been made in the 
basic model but that are not generally satisfied in 
practice are: 
(i) The ai’s are fixed known constants. 
(ii) The instrument failure probabilities ei are 

independent of the instrument ages. 
(iii) Checking and corrective actions are im- 

mediate and perfect. 

In this section we relax these assumptions and 
discuss how the basic model needs to be modified 
accordingly. We also discuss some other difficul- 
ties inherent in the basic model, and how we deal 
with them. 

5.1 Estimation of the gross error magnitudes 

First we consider assumption (i) above. In prac- 
tice the 8,‘s are unknown and typically random 
quantities. Not only are the ai’s random, they are 
also time-varying. We will not model all of these 
complexities here. Rather we will only consider 
the case that the 6,‘s are unknown but fixed 
constants. In the following we give a method of 
estimating the S, ‘s. It would have been logical in 
the present Bayesian framework to put prior dis- 
tributions on the 8,‘s and update them in light of 
the accumulating data. However, this fully Bayes- 
ian approach appears analytically intractable. Also 
it seems practically difficult to specify prior distri- 
butions for all the unknown parameters. Hence 
the following ad-hoc method is used instead. 

From (AS) we have 

E(r)=(I-DM)(6@q) (5 .I) 

where r is the vector of residuals defined in (A.2); 
If we set q equal to the vector of all l’s, then 6 
can be obtained by solving the equation 

(I-DM)6=r (5.2) 

However, generally not all elements of 11 are 1, 
i.e., gross errors are not present simultaneously in 
all instruments. Permitting all elements of q to be 
1 can lead to misleading estimates of the 8,‘s. 
Hence we allow only those elements of 11 to be 1 
that correspond to the measurements that are 
indicated to contain gross errors by the Bayes test. 
(In Section 5.3 we see that immediate checking is 
generally not feasible, and therefore vi’s for some 
measurements with type I errors are also allowed 
to be 1.) Let I be this group of measurements and 
let 6, = 6 8 q,. Then instead of (5.2) we solve the 
equation 

(I-D~)ti,=r (5.3) 

using the least squares method of Golub and 
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Reinsch [13]. The nonzero elements of the solution 
vector 8, provide estimates of the S,‘s for i E I. 
An alternative method of estimating &‘s was given 
by Romagnoli [14]. 

To obtain more stable estimates of the Si’s, 
weighted averages of the last estimates and the 
current estimates were used in our work. Note that 
estimates of the 8,‘s are not updated for those 
measurements for which no gross errors are indi- 
cated by the Bayes test. To start the process, 
initial estimates of the Si’s are provided for all 
measurements. The method of computing weighted 
averages is discussed in Part II. The estimates of 
the ai’s obtained in a given period are used as 
‘known’ fixed values when applying the Bayes test 
in the following period. 

5.2 Instruments with increasing failure rates 

We next turn to assumption (ii). Generally 
speaking, the 6,‘s will not be constant but will be 
increasing with the ages of the instruments, i.e., 
the instruments will have increasing failure rates. 
Let 8,(q) denote the failure probability for the 
ith instrument when its actual age is 7; (i = 

1, 2,. . .) n). Note that here we use the actual age 
rather than the time since the last checking of the 
instrument. 

In Part II, in which we study the performance 
of the Bayes test by Monte Carlo simulation tech- 
niques, we use the following model for 0,(T) for 
generation of gross errors in instrument i: 

1 

0 for I;= 0 

13,(q) = 1 - (1 - 0,(l)) exp{ -&(T, - 1)) 

for q= 1,2,... 

(5.4) 

where 0 < 8,(l) < 1 and pi >= 0 are given constants 
(i = 1, 2 ,.*a> n). For pi = 0 we obtain the constant 
failure rate model with 8,(K) = 0,(l) = 0, (say). 
Furthermore, for pi > 0, e,(T) increases with q 
(increasing failure rate) and as q + co, e,< q) + 1 
(i = 1, 2 ,..*, n). It can also be checked that this 
model satisfies Salvia and Bollinger’s conditions 
for a proper distribution [15]. 

It should be emphasized that this model is used 
only for simulating the occurrence of gross errors. 
The Bayes test for their detection is still based on 
the constant 8, assumption as described before. A 
Bayes test based on this model will be prohibi- 
tively complicated, and has not been worked out 
yet. This part of the simulation exercise will help 
us study the robustness of the Bayes detection 
scheme to the violation of the constant failure rate 
assumption. 

5.3 Delays and imperfections in checking and cor- 
rective actions 

We now turn to assumption (iii) which refers to 
immediate checking of instruments (followed by 
corrective actions if necessary) if they are indi- 
cated to contain gross errors. Usually this is not 
feasible in practice. First, one may want to see 
some sustained evidence of the presence of a gross 
error in a measurement before deciding to take a 
corrective action. Second, even after seeing sus- 
tained evidence, one may wish to postpone check- 
ing and corrective actions to a more convenient 
time (e.g., the end of the shift or the scheduled 
inspection/maintenance time). 

In response to the first consideration (and also 
to reduce the excessive occurrence of type I errors) 
we adopted a rule which declares that a gross 
error is present in a given measurement if in at 
least 2 out of 3 successive time periods the Bayes 
test indicates a gross error in that measurement 
(referred to as the 2 out of 3 or 2/3 deferred 
decision rule). The second consideration implies 
that when a gross error is indicated by the Bayes 
test in a given measurement, it is usually not 
known until some time later (when the instrument 
is checked) whether the gross error is actually 
present (no type II error) or not (a type I error). 
Until then, for the purposes of estimating the 8,‘s 
a gross error is assumed to have been detected 
(but not confirmed) in that instrument. However, 
for the purposes of updating the 1,‘s and mi’s 

(using (4.9)) and hence the 6,‘s (using (4.10)) we 
only use the confirmed correct detections (i.e., 
a = the number of actual gross error occurrences). 
Thus I,, m, and 0, are updated only when the ith 
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flagged instrument is checked and found to con- 
tain a gross error. 

5.4 Some other modifications and difficulties 

One difficulty in implementing the basic model 
as stated in Section 4 has to do with the updating 
of the beta prior distribution parameters Z,!“) and 
mj”) according to equation (4.9). Notice that we 
need to know the lifetimes tj” in order to apply 
this equation. However, as noted in Section 4, we 
do not observe the tl”‘s but only the (tj” + d!j))‘s. 
Exactly how to adjust these observable upper 
bounds on the ti’)‘s downward is not entirely 
clear, since the d!j”s are u~nown (dji’ 2 2 be- 
cause of the 2/3 deferred decision rule). If no 
adjustment is made then the instruments will be 
perceived to be more reliable than what they 
actually are; as a result, the prior probabi~ties of 
their being in failed states will be underestimated. 
An opposite effect would take place if excessive 
adjustment is applied. 

In the s~ulation work we found that our de- 
tection scheme is quite robust with respect to the 
amount of adjustment applied (referred to as ‘ad- 
justment for delays in detection’ and abbreviated 
as ADJ in the tables of simulation results given in 
Part II), particularly in the latter part of the time 
horizon (after a modest number of failures have 
been observed), as long as the adjustment is not 
excessive. This is because the failures are generally 
rare and the test is relatively powerful, which 
means that the t(l) ‘s are generally much bigger 
than the d!J’) ‘s. Therefore a small downward ad- 
justment to the observed (t,(j) + d,V))‘s suffices. 
Writing (4.9) as 

a 

j=l 

D a 

= m$” + c (t,(i) + d,“‘) - z d,“’ _ a 

j=l j=l 

(5.5) 

we see that even for modest values of a, Z;=,d{j) 
becomes negligible relative to Z&i{ f,(j) + dj’)), 
and hence may be ignored without incurring much 
error. 

The next modification of the basic scheme has 
to do with the updating of the instrument ages 
q(t). In Section 4 we defined, for current calendar 
time r, T(t) as the time since inst~ment i was last 
checked. This means that T(t) should be set equal 
to zero for all the instruments that are checked at 
time t. But for instruments that are falsely de- 
tected to be in error, empirically we found that the 
performance (in particular, the power) of the test 
procedure improves if ~~ (t ) is set equal to some 
small fixed number (referred to as ‘age post- 
checking’ and abbreviated as APC in the tables of 
simulation results given in Part II). 

Another modification in updating the value of 
7;(t) in practice is required because r,(t) can 
increase indefinitely if no gross error is detected in 
the ith instrument. Once -r;(t) becomes suffi- 
ciently large, the prior probability given by (4.6) 
also becomes large, which eventually leads to a 
detection (correct or false) of a gross error in that 
instrument. Empirically we found that letting 7,(t) 
increase in this fashion results in far too many 
false detections. Therefore, on an ad-hoc basis, we 
used the average age of the instrument as an upper 
bound on T;(t). For the constant failure rate model, 
the average age is given by l/Bi, which is used to 
calculate the upper bound on ri(t). Since 8, is 
unknown, we used its most current estimate given 
by (4.10). For the increasing failure rate model, as 
noted before, the Bayes test is still based on the 
constant 8, assumption, and therefore the same 
method is used to find’the average age. 

Finally we discuss a computational difficulty 
associated with the implementation of the Bayes 
test. Each application of the Bayes test requires an 
evaluation of 2” posterior probabilities. This is a 
rather large number of computations even for a 
relatively modest size process network. Further- 
more, most of the posterior probabilities are 
negligibly small and some can even lead to under- 
flow errors (e.g., the posterior probability that all 
measurements have gross errors). To avoid these 
complications we evaluated only a small fraction 
of the 2” posterior probabilities that are likely to 
be close to the maximum. 

This was done by first evaluating the posterior 
probabilities for all single gross error configura- 
tions q(,) (i=l, 2,..., n). The top 25% of the 
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measurements with the highest such posterior 
probabilities were chosen as possible candidates 
for gross errors. Group posterior probabilities 
f,(t) were computed for only those groups I 
formed from this top quartile. Thus, e.g., for n = 28 
the number of group posterior probabilities that 
need to be evaluated is drastically reduced from 
2** to 27 = 128. Empirically we found that the 
inclusion of only this top quartile of measure- 
ments rarely gave a result different from the one 
obtained if all measurements were included. A 
further reduction in computational effort was ob- 
tained by assuming that at most three undetected 
gross errors can be present at any given time. In 
the foregoing example this assumption implies 
that out of a total of 128 possible group posteri- 
ors, only 

need be evaluated. 

(iii) 

(iv) 

(v) 

terior probabilities. In fact, the magnitudes 
are likely to be random and time-va~ing. A 
unified Bayesian model should be developed 
to account for the randomness of the ai’s. 
Only gross errors due to measurement biases 
are considered in the present work. It is nec- 
essary to take into account gross errors aris- 
ing from leaks and depositions, and mis- 
specification of the model. 
The covariance matrix X of the data vectors 
is assumed to be known and fixed. Both of 
these assumptions may not be true in prac- 
tice. Even if Z is assumed to be fixed, it is 
unclear how to estimate it in the presence of 
gross errors that cannot be always correctly 
detected. 
It is necessary to develop a Bayesian test for 
the increasing failure rate model. In the pres- 
ent work, although we have used such a model 
to generate gross errors, their detection is 

carried out using a Bayesian test based on the 
constant failure rate assumption. 

6 CONCLUDING REMARKS 

APPENDIX 

In this paper we have given a theoretical devel- 
opment of a Bayesian model for occurrence of 
gross errors in process data, and a Bayesian test 
for their detection. As described in Section 5, 
numerous modifications need to be made in the 
basic scheme in order to implement it. Even with 
these modifications, the scheme is far from ready 
for application in practice because many of the 
practical realities are still not incorporated in the 
model, the present work being the first to attempt 
this modeling. It is probably worth mentioning 
some of the features that should be incorporated 
in the future developments of this model to bring 
it closer to reality and practical implementation. 

(ii) 

We have assumed that the data vectors are 
statistically independent. But, in fact, they 
may be serially correlated. This time-series 
feature should be considered in future model- 
ing. 
The magnitudes of the gross errors are as- 
sumed to be fixed in the present work; their 
estimates at any given time are regarded as 
their known values for computing the pos- 

Lemma The maximum row dimension of a full row 
rank matrix C satisfying (3.2) is n -p + q. 

Proof. The row space of C satisfying (3.2) is 
given by 

{cER”:c’D=a’B forsomeaElR4} 

for some a E R4 
) 

=(c~W”:(~)eNullspaceof( DB)} (A.l) 

Now (!‘a) is an (n + q) X p matrix with full col- 
umn rank. Therefore its nullspace has dimension 
n -p + q. Clearly, then, the dimension of the sub- 
space (A.l) can be at most n -p + q. To see that 
it is in fact equal to n -p + q, choose a basis (c;, 
a;), Cc;, a>) ,..., (q-,+,, at,_,+,) for the null- 
space of (?a), and let C:(n-p+q)Xn and 
A : (n -p + q) x q be matrices formed by taking 
the c,‘s and ai’s as their rows, respectively. If the 
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dimension of  the subspace (A.1) is less than n - p  
+ q then there exists a nonnull  vector v:  (n - p + 
q)  × 1 such that v ' C  = 0 ' .  N o w  v 'AB = v ' C D  = 0 ' ,  
and since B is full row rank v'A = 0 ' .  Therefore 

v ' ( C ,  A) = O' 

But this is impossible since the rows of  (C, A) are 
linearly independent ,  being the basis vectors of 
the nullspace of  (°B). Hence the lemma follows. 

DERIVATION OF THE  F O R M U L A  (3.6) FOR T HE  POST- 
ERIOR PROBABILITY 

To find a maximal  dimensional  t ransformat ion 
it is logical to start with the least squares residual 
vector  r because it is known that the distribution 
of  r is of  rank n - p + q  and E(r)  depends on 
8 ® ~1 but  not  on x. More  specifically, f rom Mah 
and Tamhane  [8] we have 

r = (I  -- D M ) y  (A.2) 

where 

M = (I - N B ) ( D ' Q - ' D ) - ] D ' Q  - '  (A.3) 

and 

N =  ( D ' Q - ' D ) - I B ' [ B ( D ' Q - a D ) - a B ' ]  - '  ( A . 4 )  

Thus 

E(r) = ( I -  D M ) E ( y )  

= ( I -  D M ) ( D x  + 8 ® q)  

= (D - D M D ) x  + (I - D M ) ( 8  ® ~1) 

= D N B x  + (I - D M ) ( 8  ® ~1) 

(using (A.3))  

= (I - D M ) ( 8  ® ~1) (using (2.2)) ( g . 5 )  

which is free of  x, and 

c o v ( r )  = V = (I - D M ) Q ( |  - a M ) '  ( g . 6 )  

which has rank n - p  + q [10]. Since r has a less 
than full rank distribution, i.e., it does not  have a 
p.d.f., we need to further t ransform r to a (n - p  
+ q)-dimensional  r andom vector s, 

s = H r  = H ( I  - D M ) y  (A.7) 

Such an H : ( n - p + q )  xn  is not  unique, but  a 
convenient  choice is one that makes 

c o v ( s )  = I - IVH'  = i (A.8) 

By Theorem A3-4 of  Seber [16] this H is given by 

H = ~ I ' - l / 2 G '  (A.9) 

Here ~ - 1 / 2  is an ( n - p + q ) × ( n - p + q )  diag- 
onal matrix whose diagonal elements are tp~ ]/2 
( i = 1 , 2  . . . . .  n - p + q )  where the tp, ' s  are the 
nonzero eigenvalues of  V, and the columns of  G 
are the corresponding or thonormal  eigenvectors of  
V. 

Now the p.d.f, of  s is (apart  f rom the normaliz-  
ing c o n s t a n t  (2¢r) -(n-p+q)/2) 

exp{ - ½(s - n ( l  - D M ) ( 8  ® ~1))' 

× (s - H ( I  - D M ) ( 8  ® 11))} 

(using (A.7) and (A.8))  

= exp{ - ½ ( y -  8 ® ~1)' 

× (I - D M ) ' H ' H ( I  - D M ) (  y - 8 ® ~1)} 

(A.a0) 

This expression can be simplified by making use 
of  the following relations: 

I - D M  = ( I  - D M ) ( I  - D M )  

(since I - D M  is idempotent)  

= (I - D M ) Q Q - I ( I  - D M )  

= (I - D M ) Q ( I  - D M ) ' Q  -~ 

(since Q - ' ( I  - D M )  is symmetric)  

= V Q - '  (using (A.6))  

and 

H ' H  = G~I ' - ] G '  (using (A.9))  

= V -  

(A.11) 

where V -  denotes a generalized inverse of  V satis- 
fying 

V V - V  = V (A.13) 

We thus have 

( I  - D M ) ' H ' H ( I  - D M )  

= Q - ] V V - V Q  -1 (using (A.11) and (A.12))  

= Q - ' V Q - '  (using (A.13))  

= Q - ~ ( I -  D M )  (using (A.11))  

= W (say) (A.14) 

(A.12) 
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Substituting this in (A.lO) and the resulting ex- 
pression for the p.d.f. in (3.1) we obtain the final 
formula for the posterior probability (3.6). 

This research was supported by NSF Grant 
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